New Nuclear for New England?: Why and What Needs to be True?

Capacity buildout requirement significantly smaller with SMR (GW)

Resources displaced by 1 GW SMR (GW)

System costs are lower with 15 GW SMR (\$/MWH)

Nuclear significantly reduces land-use per MWh

MWh/year per acre, direct and indirect land use

Source: Lovering et al., 2022.

Dense footprint

300 MW x 4 (GE Hitachi/Ontario)

5.6 GW (Barakah, UAE)

What has to be true to achieve the EPCET \$8500-> \$5,500/kw target with on time delivery in the 2030s?

- Completed, constructible designs, ideally already built
- A large orderbook of 1-2 standardized designs in each size class at national scale
- Unified, experienced delivery team with cost-conscious project management and aligned incentives
- A robust supply chain, including skilled labor force
- Recent experience shows these factors can reduce cost substantially!
- Community and political support/acceptance

It can be done!

LCOE of new nuclear builds (\$/MWh)

CAPEX Unit 1 – 4 at Barakah (\$/kW)

Schedule compression: Vogtle 3 - 4

Note: LCOE calculations assume an 8% discount rate; Non-US nuclear LCOEs scaled from 2020 to 2024 dollars

Source: Lazard; Bloomberg NEF; International Energy Agency; Nuclear Energy Agency; Japan Renewable Energy Institute; Bureau of Labor Statistics

0	
)

Days between major milestones	Unit 3	Unit 4	△ (%)
Cold Hydro to Hot Functional Test Start	191	103	-46%
Hot Functional Test Duration	94	42	-55%
Hot Functional Test Complete to 103(g)	371	88	-76%
103(g) to Fuel Load	71	20	-72%
Fuel Load to Mode 4	56	35	-38%
Mode 4 to Mode 2 (startup)	88	146	+66%
Mode 2 to Synch to Grid	26	16	-38%
Mode 2 to 100% Power	84	48	-43%
Synch to Grid to Substantial Completion	121	59	-51%
Fuel Load to Substantial Complete	291	256	-12%
Overall	1,018	509	-50%

Source: Southern Company

Generations of Nuclear

Potential Advanced Nuclear Characteristics

- "Inherently safe"
- Higher temperatures
- Flexible output
- Simpler modular construction
- Smaller unit size / incremental deployment
- Fuel recycling & accident resistant fuels
- Black start capability

Value according to vendors

Cheaper power &/or Easier to finance

More markets & Greater acceptance

Wider suite of applications

TBD... meanwhile we have proven options that could come down in cost

